Heat Insurance at Work

Amen Jalal¹ Ashley Pople² Pol Simpson¹ Eddy Zou¹ Oriana Bandiera¹

¹London School of Economics ²World Bank

November 4, 2025

Climate change is causing extreme heat now

- In India in 2024:
 - 37 cities surpassed 45°C (113°F)
 - 500 out 741 districts hit 40°C at least once in April/May
 - 3 districts in Maharastra hit 40°C on 48 of 61 days.
- Extreme heat has negative physical, economic and emotional impacts (e.g. Burgess et al. 2017)
- Should social protection systems change to reflect new climate risks?

This paper

- RCT of parametric heat insurance: pays daily wage when temperature passes threshold (41.6°C)
 - Highly subsidised (pay INR300, get INR400 + heat payments)
 - Implemented by the Self-Employed Women's Association (SEWA) in India: 7 states 250,000 women
 - Randomise recruitment incentives at the village level to generate experimental variation in take-up

This paper

- ► RCT of parametric heat insurance: pays daily wage when temperature passes threshold (41.6 °C)
 - Highly subsidised (pay INR300, get INR400 + heat payments)
 - Implemented by the Self-Employed Women's Association (SEWA) in India: 7 states 250,000 women
 - Randomise recruitment incentives at the village level to generate experimental variation in take-up
- Study impact on behaviours (adaptation, coping strategies) and welfare (health, mental health).
 - Baseline data & participation from SEWA membership database
 - Outcomes measured through surveys in Sept-Nov 2025

This paper

- ► RCT of parametric heat insurance: pays daily wage when temperature passes threshold (41.6 °C)
 - Highly subsidised (pay INR300, get INR400 + heat payments)
 - Implemented by the Self-Employed Women's Association (SEWA) in India: 7 states 250,000 women
 - Randomise recruitment incentives at the village level to generate experimental variation in take-up
- Study impact on behaviours (adaptation, coping strategies) and welfare (health, mental health).
 - Baseline data & participation from SEWA membership database
 - Outcomes measured through surveys in Sept-Nov 2025
- Big picture: Can it exist without subsidies? If not, is it a good use of public / philanthropic funds?

Should the government do anything about extreme heat?

- Extreme heat is jointly an (i) income shock (ii) expenditure shock.
 - Can't work, lose earnings
 - Get sick, need healthcare

Should the government do anything about extreme heat?

- Extreme heat is jointly an (i) income shock (ii) expenditure shock.
 - Can't work, lose earnings
 - Get sick, need healthcare
- How do we deal with risk as individuals
 - Diversify risk (e.g. heat insurance, health insurance, informal insurance)
 - Take actions to reduce exposure/damages (e.g. use aircon / drink water / reduce work hours)

Should the government do anything about extreme heat?

- Extreme heat is jointly an (i) income shock (ii) expenditure shock.
 - Can't work, lose earnings
 - Get sick, need healthcare
- How do we deal with risk as individuals
 - Diversify risk (e.g. heat insurance, health insurance, informal insurance)
 - Take actions to reduce exposure/damages (e.g. use aircon / drink water / reduce work hours)
- Why might government intervene:
 - Missing insurance market → support (make obligatory, subsidise) or provide (social insurance)
 - Inefficiently low adaptation → information / subsidies / fix credit markets

Suppose this product isn't financially viable without subsidies

Hard to eliminate risk with exposure reduction alone.

- ► Hard to eliminate risk with exposure reduction alone.
- Why not use (i) unemployment insurance (ii) health insurance (iii) redistributive programmes

- ► Hard to eliminate risk with exposure reduction alone.
- ▶ Why not use (i) unemployment insurance (ii) health insurance (iii) redistributive programmes
 - UI and health insurance don't typically cover informal workers

- ► Hard to eliminate risk with exposure reduction alone.
- ▶ Why not use (i) unemployment insurance (ii) health insurance (iii) redistributive programmes
 - UI and health insurance don't typically cover informal workers
 - Redistributive programmes don't respond dynamically

- Hard to eliminate risk with exposure reduction alone.
- ▶ Why not use (i) unemployment insurance (ii) health insurance (iii) redistributive programmes
 - UI and health insurance don't typically cover informal workers
 - Redistributive programmes don't respond dynamically
- Maybe this is more feasible? Why do we ever target particular risks?

- ► Hard to eliminate risk with exposure reduction alone.
- Why not use (i) unemployment insurance (ii) health insurance (iii) redistributive programmes
 - UI and health insurance don't typically cover informal workers
 - Redistributive programmes don't respond dynamically
- Maybe this is more feasible? Why do we ever target particular risks?
- ▶ Key climate adaptation question: do something different or make existing systems work better.

The Self-Employed Women's Association has 3.2 million members

Vendors and Hawkers

Labour & Service Providers

Home-based Workers

Producers (e.g. farmers)

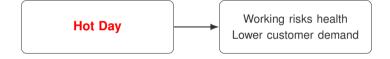
Qualitative impacts of extreme heat on SEWA members

Consistent with empirical literature

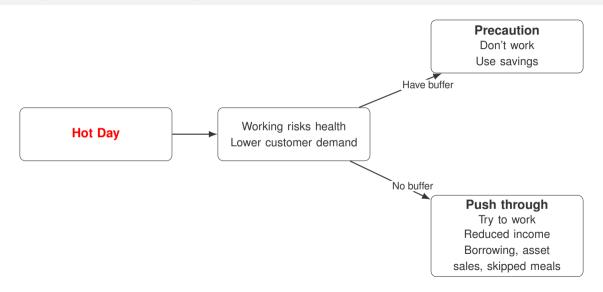
- Heat-related health impacts
 - headaches, dizziness, fainting, vomiting, fungal infections, muscle cramps, rapid pulse, fever, UTIs
 - Exacerbated by lack of access to drinking water, sanitation, and cooling (e.g. aircon)

Qualitative impacts of extreme heat on SEWA members

Consistent with empirical literature


- Heat-related health impacts
 - headaches, dizziness, fainting, vomiting, fungal infections, muscle cramps, rapid pulse, fever, UTIs
 - Exacerbated by lack of access to drinking water, sanitation, and cooling (e.g. aircon)
- Reduced labour productivity + lost income:
 - Severe health consequences from working during hottest hours of the day
 - Spoilage of produce, loss of customers, transport disruption

Qualitative impacts of extreme heat on SEWA members

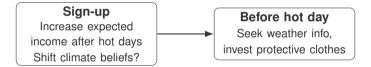

Consistent with empirical literature

- Heat-related health impacts
 - headaches, dizziness, fainting, vomiting, fungal infections, muscle cramps, rapid pulse, fever, UTIs
 - Exacerbated by lack of access to drinking water, sanitation, and cooling (e.g. aircon)
- Reduced labour productivity + lost income:
 - Severe health consequences from working during hottest hours of the day
 - Spoilage of produce, loss of customers, transport disruption
- Loss of income → financial and emotional distress.
 - High interest informal loans, sale of productive assets
 - Mental stress of financial challenges and increased care responsibilities

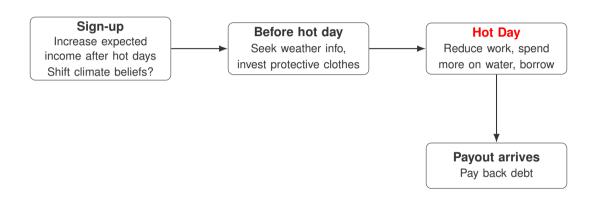
Hot Day

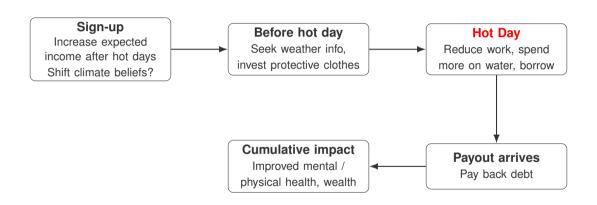
A promise of cash transfers after hot days

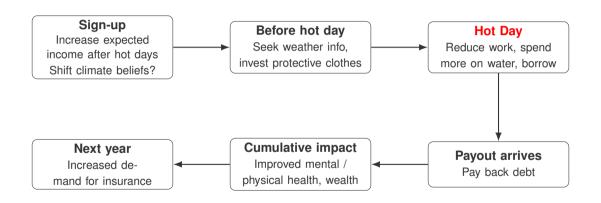
- A promise of cash transfers after hot days
- Actual liquidity in womens' bank account 4-6 weeks after a hot day

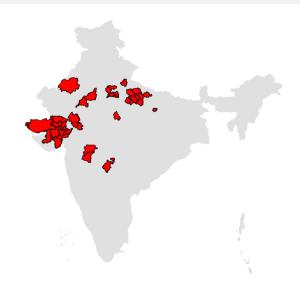

- A promise of cash transfers after hot days
- Actual liquidity in womens' bank account 4-6 weeks after a hot day
- A reminder about the health and livelihood risks associated with extreme heat

- A promise of cash transfers after hot days
- Actual liquidity in womens' bank account 4-6 weeks after a hot day
- A reminder about the health and livelihood risks associated with extreme heat
- A signal that a threshold exists beyond which conditions are especially hazardous


- A promise of cash transfers after hot days
- Actual liquidity in womens' bank account 4-6 weeks after a hot day
- A reminder about the health and livelihood risks associated with extreme heat
- A signal that a threshold exists beyond which conditions are especially hazardous
- ▶ A message of support conveying that "someone is looking out for me" during climate stress


Sign-up


Increase expected income after hot days Shift climate beliefs?


► All SEWA members in study areas are eligible for the heat insurance programme.

- ▶ All SEWA members in study areas are eligible for the heat insurance programme.
- Grassroot leaders recruit members in their assigned villages.

- ▶ All SEWA members in study areas are eligible for the heat insurance programme.
- Grassroot leaders recruit members in their assigned villages.
- To generate exogenous variation in take-up:
 - Villages are randomly assigned to treatment and added to a "priority list."
 - Leaders receive incentives to recruit only in priority (treatment) villages.

- ▶ All SEWA members in study areas are eligible for the heat insurance programme.
- Grassroot leaders recruit members in their assigned villages.
- To generate exogenous variation in take-up:
 - Villages are randomly assigned to treatment and added to a "priority list."
 - Leaders receive incentives to recruit only in priority (treatment) villages.
- Use village-level treatment assignment as an IV for individual participation.

Study covers 5,631 villages in Gujarat, UP, Rajasthan, and Maharashtra

Key outcomes

▶ Use of exposure-reduction strategies on hot days e.g. adjusting work hours, hydration.

Key outcomes

- ► Use of exposure-reduction strategies on hot days e.g. adjusting work hours, hydration.
- ▶ Use of financial coping strategies e.g. skipping meals, borrowing, or selling assets.

Secondary outcomes

- Heat-related health problems
- Healthcare use (expenditure and visits)
- Assets and liabilities
- Consumption and income
- Women's empowerment
- Climate beliefs and willingness to pay for insurance
- Understanding of insurance mechanisms
- Spillovers on household members (e.g., labour supply, education)

Heterogeneity analysis (examples)

Occupation:

- Differences in workplace, conditions and flexibility impact (i) heat exposure (ii) avoidance potential.
- Test for heterogeneity by occupational group, 'heat exposure' and market power.

Access to credit and savings:

- Insurance may benefit those lacking financial buffers the most.
- Test for heterogeneity by baseline income and local credit market access.

Prior exposure to heat events:

- Past heatwave exposure may shift perceptions and responses.
- Construct weather histories from secondary data.

Number of payments RDD

- Leverage payout threshold to implement regression discontinuity design (RDD).
- Compare "just eligible" vs. "just ineligible" by simulating eligibility under slightly adjusted thresholds.
 - Control group: villages that would have received an additional payout under a higher threshold.
 - Treatment group: villages that would have received one fewer payouts under lower threshold.